10.Sınıf Matematik Trigonometri Ders Notları Konu Anlatımı-4


REKLAMLAR




Ekleyen: soruca | Okunma Sayısı: 945

TRİGONOMETRİK DENKLEMLER

İçinde bilinmeyenin trigonometrik fonksiyonları bulunan, bilinmeyenin bazı değerleri için doğru olan eşitliklere, trigonometrik denklemler denir. Denklemi sağlayan değerlere, denklemin kökleri; köklerin oluşturduğu kümeye de çözüm kümesi denir. Çözüm kümesini bulmak için yapılan işlemlere de denklemi çözme denir.

 

A. cosx = a DENKLEMİNİN ÇÖZÜMÜ

Kosinüsü a olan reel sayıların, birim çemberdeki görüntüleri C ve D noktaları olsun.

 olmak üzere,

C noktasına a + k × 2p ve

D noktasına –a + k × 2p reel sayısı karşılık gelir.

Bu durumda,

cosx = a nın çözüm kümesi,

 

      

olur.

 

Sonuç

cosx = cosa biçimindeki denklemlerin çözüm kümesi:

      

dir.

 

B. sinx = a DENKLEMİNİN ÇÖZÜMÜ

Sinüsü a olan reel sayıların, birim çemberdeki görüntüleri C ve D noktaları olsun.

 olmak üzere,

C noktasına a + k × 2p ve

D noktasına p – a + k × 2p reel sayısı karşılık gelir.

Bu durumda,

sinx = a nın çözüm kümesi,

 

      

olur.

 

C. tanx = a DENKLEMİNİN ÇÖZÜMÜ

 

Tanjantı a olan reel sayıların, birim çemberdeki görüntüleri C ve E noktaları olsun.

 olmak üzere,

C noktasına a + k × 2p ve

E noktasına

p + a + k × 2p reel sayısı karşılık gelir.

Her iki açının da tanjant eksenindeki görüntüsü D noktasıdır.

 

Tanjant fonksiyonunun esas periyodu p olduğundan

tanx = a nın çözüm kümesi,

      

 

 

D. cotx = a DENKLEMİNİN ÇÖZÜMÜ

Kotanjantı a olan reel sayıların, birim çemberdeki görüntüleri C ve E noktaları olsun.

 olmak üzere,

C noktasına,

a + k × 2p ve

E noktasına,

p + a + k × 2p

reel sayısı karşılık gelir.

 

Her iki açının da kotanjant eksenindeki görüntüsü D noktasıdır.

Kotanjant fonksiyonunun esas periyodu p olduğundan

cotx = anın çözüm kümesi,

 

      

Uyarı

Bir trigonometrik denklemin herhangi bir aralıktaki kökü istendiğinde, denklemin çözüm kümesi bulunur. Daha sonra k yerine, ... , –1, 0, 1, ... tam sayıları yazılarak kökler bulunur. Bu köklerden verilen aralıkta olanları alınır.

 


REKLAMLAR


Sitemiz, hukuka, yasalara, telif haklarına ve kişilik haklarına saygılı olmayı amaç edinmiştir. Sitemiz, 5651 sayılı yasada tanımlanan yer sağlayıcı olarak hizmet vermektedir. İlgili yasaya göre, site yönetiminin hukuka aykırı içerikleri kontrol etme yükümlülüğü yoktur. Bu nedenle, sitemiz uyar ve kaldır prensibini benimsemiştir. Telif hakkına konu olan eserlerin yasal olmayan bir biçimde paylaşıldığını ve yasal haklarının çiğnendiğini düşünen hak sahipleri veya meslek birlikleri, dersetkinlik@gmail.com mail adresinden bize ulaşabilirler. Şikayet yerinde görüldüğü takdirde ihlal olduğu düşünülen içerikler sitemizden kaldırılacaktır. Sitemiz hiçbir şekilde kar amacı gütmemektedir ve sitemizde yer alan tüm materyaller yalnızca bilgilendirme ve eğitim amacıyla sunulmaktadır.